Evaluating Random Forests for Survival Analysis using Prediction Error Curves.

نویسندگان

  • Ulla B Mogensen
  • Hemant Ishwaran
  • Thomas A Gerds
چکیده

Prediction error curves are increasingly used to assess and compare predictions in survival analysis. This article surveys the R package pec which provides a set of functions for efficient computation of prediction error curves. The software implements inverse probability of censoring weights to deal with right censored data and several variants of cross-validation to deal with the apparent error problem. In principle, all kinds of prediction models can be assessed, and the package readily supports most traditional regression modeling strategies, like Cox regression or additive hazard regression, as well as state of the art machine learning methods such as random forests, a nonparametric method which provides promising alternatives to traditional strategies in low and high-dimensional settings. We show how the functionality of pec can be extended to yet unsupported prediction models. As an example, we implement support for random forest prediction models based on the R-packages randomSurvivalForest and party. Using data of the Copenhagen Stroke Study we use pec to compare random forests to a Cox regression model derived from stepwise variable selection. Reproducible results on the user level are given for publicly available data from the German breast cancer study group.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of Survival Forests in Analyzing First Birth Interval

Background and objectives: Application of statistical machine learning methods such as ensemble based approaches in survival analysis has been received considerable interest over the past decades in time-to-event data sets. One of these practical methods is survival forests which have been developed in a variety of contexts due to their high precision, non-parametric and non-linear nature. This...

متن کامل

Balanced Random Survival Forests for Extremely Unbalanced, Right Censored Data

Accuracies of survival models for life expectancy prediction as well as lifesaving criticalcare applications are significantly compromised due to the sparsity of samples and extreme imbalance between the survival and mortality classes in addition to the invalidity of the popular proportional hazard assumption. An imbalance in data results in an underestimation (overestimation) of the hazard of ...

متن کامل

Kernel Induced Random Survival Forests

Kernel Induced Random Survival Forests (KIRSF) is a statistical learning algorithm which aims to improve prediction accuracy for survival data. As in Random Survival Forests (RSF), Cumulative Hazard Function is predicted for each individual in the test set. Prediction error is estimated using Harrell’s concordance index (C index) [Harrell et al. (1982)]. The C-index can be interpreted as a misc...

متن کامل

Comparison of Random Survival Forests for Competing Risks and Regression Models in Determining Mortality Risk Factors in Breast Cancer Patients in Mahdieh Center, Hamedan, Iran

Introduction: Breast cancer is one of the most common cancers among women worldwide. Patients with cancer may die due to disease progression or other types of events. These different event types are called competing risks. This study aimed to determine the factors affecting the survival of patients with breast cancer using three different approaches: cause-specific hazards regression, subdistri...

متن کامل

Random forests for survival analysis using maximally selected rank statistics

The most popular approach for analyzing survival data is the Cox regression model. The Cox model may, however, be misspecified, and its proportionality assumption is not always fulfilled. An alternative approach is random forests for survival outcomes. The standard split criterion for random survival forests is the log-rank test statistics, which favors splitting variables with many possible sp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of statistical software

دوره 50 11  شماره 

صفحات  -

تاریخ انتشار 2012